Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Trichlorido(5,5'-dimethyl-2,2'-bipyridine- $\kappa^2 N, N'$)(methanol- κO)indium(III)

Khadijeh Kalateh,^a Roya Ahmadi,^a Amin Ebadi,^b Vahid Amani^a* and Hamid Reza Khavasi^c

^aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, ^bDepartment of Chemistry, Islamic Azad University, Kazeroon Branch, Kazeroon, Fars, Iran, and ^cDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran Correspondence e-mail: v_amani2002@yahoo.com

Received 26 September 2008; accepted 26 September 2008

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.062; data-to-parameter ratio = 22.6.

In the molecule of the title compound, $[InCl_3(C_{12}H_{12}N_2)-(CH_4O)]$, the In^{III} atom is six-coordinated in a distorted octahedral configuration by two N atoms from the chelating 5,5'-dimethyl-2,2'-bipyridine ligand, one O atom from a methanol molecule and three Cl atoms. In the crystal structure, intermolecular $O-H\cdots$ Cl hydrogen bonds link the molecules into chains parallel to [001].

Related literature

For related literature, see: Ahmadi, Kalateh, Ebadi *et al.* (2008); Ahmadi, Khalighi *et al.* (2008); Amani *et al.* (2007); Khalighi *et al.* (2008); Khavasi *et al.* (2007, 2008); Tadayon Pour *et al.* (2008); Yousefi, Rashidi Vahid *et al.* (2008); Yousefi, Tadayon Pour *et al.* (2008). Yousefi, Khalighi *et al.* (2008). For related structures, see: Ilyukhin & Malyarick (1994); Malyarick *et al.* (1992); Nan *et al.* (1987); Ahmadi, Kalateh, Abedi *et al.* (2008).

Experimental

Crystal data [InCl₃($C_{12}H_{12}N_2$)(CH₄O)] $M_r = 437.45$ Monoclinic, $P2_1/c$ a = 10.9080 (6) Å

b = 11.2087 (7) Åc = 13.3584 (8) Å $\beta = 107.211 (4)^{\circ}$ $V = 1560.12 (16) \text{ Å}^{3}$ T = 120 (2) K

 $R_{\rm int} = 0.043$

 $0.17 \times 0.15 \times 0.10 \text{ mm}$

12144 measured reflections

4185 independent reflections

3716 reflections with $I > 2\sigma(I)$

Z = 4

Mo $K\alpha$ radiation $\mu = 2.02 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1998)

(SADABS; Sheldrick, 1998) $T_{\min} = 0.729, T_{\max} = 0.820$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.029 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.062 & \text{independent and constrained} \\ S &= 1.15 & \text{refinement} \\ 4185 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.92 \text{ e } \text{ Å}^{-3} \\ 185 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.68 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, $^{\circ}$).

In1-Cl1	2.5015 (6)	In1-O1	2.2991 (19)
In1-Cl2	2.4262 (6)	In1-N1	2.279 (2)
In1-Cl3	2.4080 (6)	In1-N2	2.284 (2)
Cl2-In1-Cl1	96.05 (2)	N1-In1-Cl3	162.82 (6)
Cl3-In1-Cl1	100.89(2)	N1-In1-O1	80.51 (7)
Cl3-In1-Cl2	99.22 (2)	N1-In1-N2	72.73 (7)
O1-In1-Cl1	169.20 (5)	N2-In1-Cl1	87.68 (5)
O1-In1-Cl2	88.30 (5)	N2-In1-Cl2	165.54 (5)
O1-In1-Cl3	88.11 (5)	N2-In1-Cl3	93.76 (5)
N1-In1-Cl1	89.35 (5)	N2-In1-O1	85.77 (7)
N1-In1-Cl2	93.30 (5)		

Table 2 Hydrogen-bond geometry (Å, °).

WinGX (Farrugia, 1999).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O1 - H1B \cdots Cl1^i$	0.83 (5)	2.29 (5)	3.115 (2)	174 (4)
Symmetry code: (i) x,	$-y + \frac{1}{2}, z + \frac{1}{2}.$			

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication:

The authors are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2541).

References

- Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306-m1307.
- Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.
- Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.
- Amani, V., Safari, N., Khavasi, H. R. & Mirzaei, P. (2007). Polyhedron, 26, 4908–4914.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

metal-organic compounds

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Ilyukhin, A. B. & Malyarick, M. A. (1994). Kristallografiya, 39, 439-443.
- Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.
- Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.
- Khavasi, H. R., Amani, V. & Safari, N. (2007). Z. Kristallogr. 222, 155–156.
 Malyarick, M. A., Petrosyants, S. P. & Ilyukhin, A. B. (1992). Polyhedron, 11, 1067–1073.
- Nan, D., Naidong, W., Zhenchao, D. & Shengzhi, H. (1987). *Jiegou Huaxue*, 6, 145–149.
- Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.
- Yousefi, M., Khalighi, A., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1284–m1285.
- Yousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339–m1340.
- Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.

Acta Cryst. (2008). E64, m1353-m1354 [doi:10.1107/S160053680803119X]

Trichlorido(5,5'-dimethyl-2,2'-bipyridine- $\kappa^2 N, N'$)(methanol- κO)indium(III)

K. Kalateh, R. Ahmadi, A. Ebadi, V. Amani and H. R. Khavasi

Comment

Recently, we reported the syntheses and crystal structures of $[Zn(5,5'-dmbpy)Cl_2]$, (II), (Khalighi *et al.*, 2008), $[Zn(6-mbpy)Cl_2]$, (III), (Ahmadi, Kalateh *et al.*, 2008), $[HgI_2(4,4'-dmbpy)]$, (IV), (Yousefi, Tadayon Pour *et al.*, 2008), $[Cd(5,5'-dmbpy)(\mu-Cl)_2]_n$, (V), (Ahmadi, Khalighi *et al.*, 2008), $[Hg(5,5'-dmbpy)I_2]$, (VI), (Tadayon Pour *et al.*, 2008), $[Cu(5,5'-dcbpy)(en)(H_2O)_2]$.2.5H₂O, (VII), (Yousefi, Khalighi *et al.*, 2008), $[Hg(dmphen)I_2]$, (VII), (Yousefi, Rashidi Vahid *et al.*, 2008), and $\{[HgCl(dm4bt)]_2(\mu-Cl)_2\}$, (IX), (Khavasi *et al.*, 2008). [where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6-mbpy is 6-methyl-2,2'-bipyridine, 4,4'-dimethyl-2,2'-bi- pyridine, 5,5'-dcbpy is 2,2'-bipyridine-5,5'-dicarboxylate, en is ethylene- diamine, dmphen is 4,7-diphenyl-1,10-phenanthroline and dm4bt is 2,2'-dimethyl-4,4'-bithiazole]. We have also reported the syntheses and crystal structures of iron(III) complexes of [Fe(bipy)Cl₃(DMSO)], (X) and [Fe(phen)Cl₃(DMSO)], (XI), (Amani *et al.*, 2007) and [Fe(phen)Cl₃(CH₃OH)].CH₃OH, (XII), (Khavasi *et al.*, 2007) [where bipy is 2,2'-bipyridine, DMSO is dimethyl sulfoxide and phen is 1,10-phenanthroline]. There are several In^{III} complexes, with formula, [In(N—N)Cl₃(*L*]), (*L* = DMSO, H₂O and EtOH), such as [In(bipy)Cl₃(H₂O)], (XVII), [In(bipy)Cl₃(EtOH)], (XIV) and [In(bipy)Cl₃(H₂O)], (XVI), (Ahmadi, Kalateh, Abedi *et al.*, 2008), [In(phen)Cl₃(DMSO)], (XVI), (Nan *et al.*, 1987), [In(4,4'-dmbpy)Cl₃(DMSO)], (XVII), (Ahmadi, Kalateh, Abedi *et al.*, 2008), [In(phen)Cl₃(H₂O)], (XVII), (IV) III), and [In(phen)Cl₃(EtOH)].EtOH, (XIX), (Ilyukhin & Malyarick, 1994) have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound, (Fig. 1), the In^{III} atom is six-coordinated in a distorted octahedral configuration by two N atoms from the chelating 5,5'-dimethyl-2,2'-bipyridine ligand, one O atom from one methanol and three Cl atoms. The In—Cl and In—N bond lengths and angles (Table 1) are within normal ranges, as in (XIII), (XIV), (XV) and (XVII).

In the crystal structure, intermolecular O—H…Cl hydrogen bonds (Table 2) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, (I), a solution of 5,5'-dimethyl -2,2'-bipyridine (0.20 g, 1.10 mmol) in methanol (20 ml) was added to a solution of $InCl_3.4H_2O$ (0.16 g, 0.55 mmol) in methanol (50 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless block crystals of the title compound were isolated (yield; 0.18 g, 74.8%, m.p. <573 K).

Refinement

H1B atom (for OH) was located in difference synthesis and refined isotropically [O-H = 0.83 (5) Å; $U_{iso}(H) = 0.036 (11) Å^2$]. The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Trichlorido(5,5'-dimethyl-2,2'-bipyridine- $\kappa^2 N$,N')(methanol- κ O)indium(III)

Crystal data	
[InCl ₃ (C ₁₂ H ₁₂ N ₂)(CH ₄ O)]	$F_{000} = 864$
$M_r = 437.45$	$D_{\rm x} = 1.862 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1324 reflections
a = 10.9080 (6) Å	$\theta = 2.0 - 29.2^{\circ}$
<i>b</i> = 11.2087 (7) Å	$\mu = 2.02 \text{ mm}^{-1}$
c = 13.3584 (8) Å	T = 120 (2) K
$\beta = 107.211 \ (4)^{\circ}$	Block, colorless
$V = 1560.12 (16) \text{ Å}^3$	$0.17\times0.15\times0.10~mm$
Z = 4	
Data collection	

```
Bruker SMART CCD area-detector 4185 independent reflections
```

Radiation source: fine-focus sealed tube	3716 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
T = 120(2) K	$\theta_{\rm max} = 29.2^{\circ}$
φ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)	$h = -14 \rightarrow 14$
$T_{\min} = 0.729, T_{\max} = 0.820$	$k = -15 \rightarrow 15$
12144 measured reflections	$l = -14 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.062$	$w = 1/[\sigma^2(F_o^2) + (0.0209P)^2 + 1.9934P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.15	$(\Delta/\sigma)_{\rm max} = 0.017$
4185 reflections	$\Delta \rho_{max} = 0.92 \text{ e} \text{ Å}^{-3}$
185 parameters	$\Delta \rho_{\rm min} = -0.68 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
In1	0.773908 (15)	0.320581 (14)	-0.004168 (13)	0.01003 (5)
C11	0.87230 (6)	0.29569 (5)	-0.14993 (5)	0.01500 (11)
C12	0.55271 (5)	0.31788 (6)	-0.11430 (5)	0.01766 (12)
C13	0.79945 (6)	0.53204 (5)	0.02679 (5)	0.01588 (11)
01	0.69912 (19)	0.30834 (17)	0.13936 (16)	0.0178 (4)
H1B	0.740 (4)	0.280 (4)	0.197 (4)	0.036 (11)*
N1	0.7811 (2)	0.11891 (18)	0.01880 (17)	0.0126 (4)
N2	0.97004 (19)	0.27552 (18)	0.10949 (16)	0.0109 (4)
C1	0.6867 (2)	0.0450 (2)	-0.0335 (2)	0.0152 (5)

H1	0.6098	0.0782	-0.0740	0.018*
C2	0.6982 (3)	-0.0788 (2)	-0.0299 (2)	0.0160 (5)
C3	0.5882 (3)	-0.1568 (2)	-0.0885 (2)	0.0222 (5)
H3A	0.5655	-0.1386	-0.1619	0.027*
H3B	0.5158	-0.1426	-0.0632	0.027*
H3C	0.6132	-0.2391	-0.0777	0.027*
C4	0.8152 (3)	-0.1254 (2)	0.0288 (2)	0.0172 (5)
H4	0.8282	-0.2075	0.0310	0.021*
C5	0.9129 (2)	-0.0502 (2)	0.0843 (2)	0.0161 (5)
Н5	0.9908	-0.0815	0.1247	0.019*
C6	0.8929 (2)	0.0732 (2)	0.07869 (19)	0.0123 (4)
C7	0.9932 (2)	0.1588 (2)	0.13432 (19)	0.0117 (4)
C8	1.1071 (2)	0.1235 (2)	0.2067 (2)	0.0154 (5)
H8	1.1202	0.0440	0.2269	0.018*
C9	1.2017 (2)	0.2081 (2)	0.2486 (2)	0.0151 (5)
Н9	1.2782	0.1852	0.2974	0.018*
C10	1.1821 (2)	0.3271 (2)	0.21787 (19)	0.0136 (4)
C11	1.2857 (2)	0.4191 (2)	0.2546 (2)	0.0171 (5)
H11A	1.2565	0.4812	0.2914	0.020*
H11B	1.3060	0.4525	0.1952	0.020*
H11C	1.3610	0.3824	0.3006	0.020*
C12	1.0617 (2)	0.3568 (2)	0.15016 (19)	0.0137 (4)
H12	1.0442	0.4365	0.1324	0.016*
C13	0.6145 (3)	0.3950 (2)	0.1646 (2)	0.0186 (5)
H13A	0.5359	0.3991	0.1083	0.022*
H13B	0.6552	0.4718	0.1744	0.022*
H13C	0.5963	0.3715	0.2278	0.022*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
In1	0.00974 (8)	0.00875 (8)	0.00997 (8)	0.00064 (6)	0.00040 (5)	0.00051 (6)
Cl1	0.0161 (3)	0.0161 (3)	0.0129 (3)	0.0011 (2)	0.0044 (2)	-0.0003 (2)
Cl2	0.0119 (2)	0.0182 (3)	0.0186 (3)	0.0012 (2)	-0.0019 (2)	0.0003 (2)
C13	0.0203 (3)	0.0100 (2)	0.0166 (3)	-0.0002 (2)	0.0043 (2)	-0.0008 (2)
01	0.0205 (9)	0.0188 (9)	0.0152 (9)	0.0059 (7)	0.0071 (7)	0.0035 (7)
N1	0.0118 (9)	0.0110 (9)	0.0136 (10)	-0.0003 (7)	0.0015 (8)	0.0011 (7)
N2	0.0111 (9)	0.0103 (8)	0.0102 (9)	-0.0003 (7)	0.0017 (7)	0.0009 (7)
C1	0.0161 (11)	0.0140 (11)	0.0152 (12)	-0.0024 (9)	0.0038 (9)	-0.0015 (9)
C2	0.0211 (12)	0.0132 (11)	0.0154 (11)	-0.0040 (9)	0.0080 (10)	-0.0008 (9)
C3	0.0250 (13)	0.0181 (12)	0.0230 (14)	-0.0078 (10)	0.0062 (11)	-0.0056 (10)
C4	0.0246 (13)	0.0096 (10)	0.0204 (13)	-0.0005 (9)	0.0112 (10)	0.0004 (9)
C5	0.0177 (11)	0.0128 (10)	0.0181 (12)	0.0048 (9)	0.0059 (10)	0.0038 (9)
C6	0.0125 (11)	0.0128 (10)	0.0116 (11)	0.0017 (8)	0.0035 (9)	0.0016 (8)
C7	0.0124 (10)	0.0124 (10)	0.0106 (10)	0.0012 (8)	0.0037 (8)	0.0019 (8)
C8	0.0147 (11)	0.0136 (11)	0.0166 (12)	0.0030 (9)	0.0025 (9)	0.0033 (9)
C9	0.0119 (10)	0.0189 (11)	0.0127 (11)	0.0020 (9)	0.0006 (9)	0.0022 (9)
C10	0.0131 (10)	0.0164 (11)	0.0111 (10)	-0.0009 (9)	0.0033 (8)	-0.0015 (9)

C11	0.0124 (11)	0.0211 (12)	0.0149 (12)	-0.0022 (9)	-0.0004 (9)	0.0005 (10)
C12	0.0139 (11)	0.0150 (10)	0.0117 (11)	0.0010 (8)	0.0030 (9)	0.0023 (9)
C13	0.0183 (12)	0.0173 (11)	0.0227 (13)	0.0012 (9)	0.0098 (10)	-0.0030 (10)
Geometric paran	neters (Å, °)					
In1—Cl1		2.5015 (6)	C6—]	N1	1.34	7 (3)
In1—Cl2		2.4262 (6)	C6—0	C7	1.47	(3)
In1—Cl3		2.4080 (6)	C7—]	N2	1.35	5 (3)
In1—O1		2.2991 (19)	C7—0	C8	1.38	37 (3)
In1—N1		2.279 (2)	C8—0	С9	1.39	91 (4)
In1—N2		2.284 (2)	C8—]	H8	0.93	00
O1—H1B		0.83 (5)	С9—(C10	1.39	94 (4)
C1—N1		1.345 (3)	C9—]	H9	0.93	00
C1—C2		1.393 (3)	C10-	-C12	1.39	97 (3)
C1—H1		0.9300	C10-	-C11	1.50	01 (3)
C2—C4		1.387 (4)	C11-	-H11A	0.96	00
C2—C3		1.504 (4)	C11-	-H11B	0.96	00
С3—НЗА		0.9600	C11-	-H11C	0.96	00
С3—Н3В		0.9600	C12-	-N2	1.34	3 (3)
C3—H3C		0.9600	C12—	-H12	0.93	00
C4—C5		1.389 (4)	C13—	-01	1.44	7 (3)
C4—H4		0.9300	C13—	-H13A	0.96	00
C5—C6		1.399 (3)	C13—	-H13B	0.96	00
С5—Н5		0.9300	C13—	-H13C	0.96	600
Cl2—In1—Cl1		96.05 (2)	C2—(C4—C5	120	.4 (2)
Cl3—In1—Cl1		100.89 (2)	C2—(C4—H4	119.	8
Cl3—In1—Cl2		99.22 (2)	C5—0	C4—H4	119.	8
O1—In1—Cl1		169.20 (5)	C4—(С5—С6	119.	2 (2)
O1—In1—Cl2		88.30 (5)	C4—0	С5—Н5	120	.4
O1—In1—Cl3		88.11 (5)	C6—(С5—Н5	120	.4
N1—In1—Cl1		89.35 (5)	N1—	С6—С5	120	.5 (2)
N1—In1—Cl2		93.30 (5)	N1—	С6—С7	117.	2 (2)
N1—In1—Cl3		162.82 (6)	С5—(С6—С7	122	.3 (2)
N1—In1—O1		80.51 (7)	N2—	С7—С8	120	.6 (2)
N1—In1—N2		72.73 (7)	N2—	С7—С6	116.	6 (2)
N2—In1—Cl1		87.68 (5)	C8—0	С7—С6	122	.8 (2)
N2—In1—Cl2		165.54 (5)	C7—0	С8—С9	119.	4 (2)
N2—In1—Cl3		93.76 (5)	С7—(С8—Н8	120	.3
N2—In1—O1		85.77 (7)	С9—(С8—Н8	120	.3
In1—O1—H1B		125 (3)	C8—0	С9—С10	120	2 (2)
C13—O1—In1		124.22 (16)	C8—(С9—Н9	119.	9
С13—О1—Н1В		104 (3)	C10-	-С9—Н9	119.	9
C1—N1—In1		123.41 (17)	С9—(C10—C12	116.	8 (2)
C1—N1—C6		119.6 (2)	С9—(C10—C11	121	.8 (2)
C6—N1—In1		116.52 (16)	C12—	-C10C11	121	.4 (2)
C7—N2—In1		116.51 (16)	C10–	-C11—H11A	109	.5
C12—N2—In1		123.91 (16)	C10–	-C11—H11B	109	.5
C12—N2—C7		119.6 (2)	H11A	—С11—Н11В	109	.5

N1—C1—C2	123.3 (3)	C10-C11-H11C	109.5
N1—C1—H1	118.4	H11A—C11—H11C	109.5
C2—C1—H1	118.4	H11B-C11-H11C	109.5
C4—C2—C1	116.9 (2)	N2-C12-C10	123.1 (2)
C4—C2—C3	122.3 (2)	N2—C12—H12	118.5
C1—C2—C3	120.8 (3)	C10—C12—H12	118.5
С2—С3—Н3А	109.5	O1—C13—H13A	109.5
С2—С3—Н3В	109.5	O1—C13—H13B	109.5
НЗА—СЗ—НЗВ	109.5	H13A—C13—H13B	109.5
С2—С3—Н3С	109.5	O1—C13—H13C	109.5
НЗА—СЗ—НЗС	109.5	H13A—C13—H13C	109.5
НЗВ—СЗ—НЗС	109.5	H13B—C13—H13C	109.5
N1—In1—O1—C13	-152.9 (2)	N1—C1—C2—C3	178.8 (2)
N2—In1—O1—C13	133.9 (2)	C1—C2—C4—C5	2.5 (4)
Cl3—In1—O1—C13	40.01 (19)	C3—C2—C4—C5	-178.0 (2)
Cl2—In1—O1—C13	-59.27 (19)	C2—C4—C5—C6	-1.2 (4)
Cl1—In1—O1—C13	-173.3 (2)	C4—C5—C6—N1	-1.2 (4)
N2—In1—N1—C1	-175.9 (2)	C4—C5—C6—C7	-179.1 (2)
O1—In1—N1—C1	95.6 (2)	C5—C6—N1—C1	2.0 (4)
Cl3—In1—N1—C1	144.79 (17)	C7—C6—N1—C1	-180.0 (2)
Cl2—In1—N1—C1	7.9 (2)	C5—C6—N1—In1	-170.21 (19)
Cl1—In1—N1—C1	-88.11 (19)	C7—C6—N1—In1	7.8 (3)
N2—In1—N1—C6	-3.99 (17)	N1—C6—C7—N2	-8.3 (3)
O1—In1—N1—C6	-92.48 (18)	C5-C6-C7-N2	169.6 (2)
Cl3—In1—N1—C6	-43.3 (3)	N1—C6—C7—C8	173.2 (2)
Cl2—In1—N1—C6	179.80 (17)	C5—C6—C7—C8	-8.9 (4)
Cl1—In1—N1—C6	83.78 (17)	C8—C7—N2—C12	4.4 (4)
N1—In1—N2—C12	178.2 (2)	C6—C7—N2—C12	-174.2 (2)
O1—In1—N2—C12	-100.4 (2)	C8—C7—N2—In1	-176.82 (18)
Cl3—In1—N2—C12	-12.60 (19)	C6—C7—N2—In1	4.6 (3)
Cl2—In1—N2—C12	-166.46 (16)	N2—C7—C8—C9	-4.3 (4)
Cl1—In1—N2—C12	88.17 (19)	C6—C7—C8—C9	174.2 (2)
N1—In1—N2—C7	-0.55 (16)	C7—C8—C9—C10	-0.2 (4)
O1—In1—N2—C7	80.81 (17)	C8—C9—C10—C12	4.4 (4)
Cl3—In1—N2—C7	168.64 (17)	C8—C9—C10—C11	-174.9 (2)
Cl2—In1—N2—C7	14.8 (3)	C9—C10—C12—N2	-4.5 (4)
Cl1—In1—N2—C7	-90.59 (17)	C11—C10—C12—N2	174.9 (2)
C2-C1-N1-C6	-0.5 (4)	C10-C12-N2-C7	0.1 (4)
C2—C1—N1—In1	171.1 (2)	C10—C12—N2—In1	-178.61 (18)
N1—C1—C2—C4	-1.7 (4)		
Hydrogen-bond geometry (Å, °)			

D—H··· A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O1—H1B…Cl1 ⁱ	0.83 (5)	2.29 (5)	3.115 (2)	174 (4)
Symmetry codes: (i) x , $-y+1/2$, $z+1/2$.				

